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Abstract

Simple methods for determining the human pharmacokinetics of known and unknown drug-like compounds is a much
sought-after goal in the pharmaceutical industry. The current study made use of artificial neural networks (ANNs) for the
prediction of clearances, fraction bound to plasma proteins, and volume of distribution of a series of structurally diverse com-
pounds. A number of theoretical descriptors were generated from the drug structures and both automated and manual pruning
were used to derive optimal subsets of descriptors for quantitative structure-pharmacokinetic relationship models. Models were
trained on one set of compounds and validated with another. Absolute predicted ability was evaluated using a further indepen-
dent test set of compounds. Correlations for test compounds ranged from 0.855 to 0.992. Predicted values agreed closely with
experimental values for total clearance, renal clearance, and volume of distribution, while predictions for protein binding were
encouraging. The combination of descriptor generation, ANNs, and the speed and success of this technique compared with
conventional methods shows strong potential for use in pharmaceutical product development.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in lead compound identification
using high throughput andin silico techniques have
allowed rapid identification of compounds exhibiting
possible pharmacological effects at known drug recep-
tor sites (Grass and Sinko, 2001). However, potential
receptor affinity alone does not provide sufficient evi-
dence to justify development of a particular chemical
entity. Successful drug candidates must also possess
other attributes to make them suitable for clinical ap-
plication.
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Ultimately, successful drugs must be administered
to humans so properties such as human toxicity,
bioavailability and other pharmacokinetic parameters
become crucial. Screening for absorption, distribu-
tion, metabolism, and excretion (ADME) properties
and toxicity is often performed in vitro or with various
animal models which can be both time-consuming
and expensive (Norris et al., 2000). Even then, results
may not accurately reflect human pharmacokinetics,
and it has been reported that the majority of drugs
dropped from development was due to efficacy and/or
pharmacokinetic difficulties (Grass and Sinko, 2001).

Prediction of human pharmacokinetic parameters
is an area in need of progress to aid in pharmaceu-
tical product development. Conventional quantitative
structure–pharmacokinetic relationship (QSPkR) anal-
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yses in general employ methods relating experimen-
tally-derived properties such as tissue:blood partition
coefficients and octanol:buffer partition coefficients to
predict drug pharmacokinetic parameters. Experimen-
tal generation of this information is time and resource
intensive, and has proven difficult because of the com-
plex physiological processes involved in drug ADME
and the nonlinear relationships present amongst drug
data (Fouchecourt et al., 2001).

Methods of generating descriptors solely from
drug structure are gaining popularity because of their
resource-saving potential and success in quantitative
structure–activity and structure–property relationship
(QSAR and QSPR) analyses. These descriptors range
in complexity from simple one-dimensional atomic
and functional group counts, to two-dimensional topo-
logical and charge indices, to complex three-dimen-
sional descriptors which often rely on conformational
aspects of a molecule. Both one- and two-dimensional
topological indices have been used extensively to
numerically relate molecular structure with activ-
ity and/or property (Ghafourian and Fooladi, 2001).
These descriptors rely only on the molecular graph
for their calculation. In contrast, three-dimensional
descriptors require the absolute conformation of a
molecule to be described, and information gained is
specific to that conformation. They, too, have been
successfully used to develop QSPRs (Feher et al.,
2000).

Various methods for constructing QSAR/QSPR
models have been used including multilinear regres-
sion (MLR), principal component analysis (PCA) and
partial least-squares (PLS) regression. In addition, ar-
tificial neural networks (ANNs) have become popular
due to their success where complex nonlinear rela-
tionships exist amongst data, as is often the case when
dealing with drug data sets (Turner et al., 2003b).
Moreover, the generalisation ability of ANNs makes
them useful for construction of predictive models.
Hence, due to their inherent nonlinearity and suitabil-
ity for predictive applications, ANNs were the method
of choice in the current study. For a review of ANN
use in the pharmaceutical area see Agatonovic-Kustrin
and Beresford (Agatonovic-Kustrin and Beresford,
2000).

ANNs represent learning tools which are distinctly
different from standard statistical methods, and as
such are not necessarily bound by the same con-

straints that linear methods are. One important param-
eter in MLR studies is the relationship between the
number of experimental data points and optimisable
parameters. A requirement for MLR models is that
the ratio of the former to the latter should be greater
than a certain threshold. The required ratio for ANN
models is not so straightforward, however, since the
optimum value depends upon the nature of the data
set itself (So and Richards, 1992). It has been found
that ρ, defined as the ratio of the number of patterns
(compounds) to the number of connections can vary
greatly without compromising the results of an ANN
model (Turner et al., 2003a).

The aim of the current study was to use theoreti-
cally derived descriptors as inputs for ANN models to
predict the pharmacokinetic parameters of structurally
diverse compounds.

2. Materials and methods

2.1. Experimental data

The ANN technique develops data-driven models,
such that known information about drugs from empir-
ical methods does not influence the system. Human
pharmacokinetic data for the current study (Table 1)
was taken from the literature after careful screening.
Absolute values gained from intravenous administra-
tion were accepted over apparent values based on the
bioavailable fraction of a drug.

The data set of 62 compounds was divided ran-
domly into a working data set for model construc-
tion and a testing set to evaluate the predictive per-
formance of each model. The working set was further
divided into a training subset of 50 compounds and
a validation subset of six compounds used to mon-
itor network performance during training. Final pre-
dictive ability was determined using the six indepen-
dent compounds in the testing set. Subsets were all
examined statistically to ensure that validation and
testing data did not lie outside the limits of the train-
ing set (Loukas, 2001). Separate models were gen-
erated for each pharmacokinetic parameter. Parame-
ters investigated were systemic and renal clearances
(CL and CLR, respectively), volume of distribution at
steady state (Vss), and fraction bound to plasma pro-
teins (fb).
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Table 1
Drug data set

Compound Usea CL (ml/min/kg) CLR (ml/min/kg) Vss (l/kg) fb Reference

Acebutolol tra 11.0 4.21 1.33 0.26 Hinderling et al. (1984a)
Alprenolol tra 6.47 0.26 1.07 0.76 Hinderling et al. (1984a)
Amitriptyline tra 11.5 0.12 15.0 0.95 Schulz et al. (1985)
Amlodipine tra 5.90 0.59 16.0 0.93 Meredith and Elliott (1992)
Amoxicillin tra 2.60 2.24 0.21 0.18 Sjovall et al. (1986)
Ampicillin tra 1.70 1.39 0.28 0.18 Ehrnebo et al. (1979)
Atenolol tra 2.54 2.40 1.11 0.03 Hinderling et al. (1984a)
Betamethasone tra 2.90 0.14 1.40 0.64 Petersen et al. (1983)
Bufuralol tes 7.70 0.06 1.86 0.91 Hinderling et al. (1984a)
Bupivacaine tra 7.10 0.14 0.90 0.95 Burm (1989)
Cefaclor tra 6.10 3.17 0.36 0.25 Sides et al. (1988), Brumfitt

and Hamilton-Miller (1999)
Cefadroxil tra 2.90 2.70 0.24 0.20 Welling et al. (1985)
Cefprozil tra 3.00 2.19 0.22 0.40 Wiseman and Benfield (1993)
Ceftizoxime tra 1.10 1.02 0.36 0.28 Barriere and Flaherty (1984)
Cephalexin tes 4.30 3.91 0.26 0.14 Spyker et al. (1978)
Cephalothin val 6.70 3.48 0.26 0.71 Bergan (1987)
Cephapirin tes 6.90 4.28 0.21 0.07 Bergan (1977)
Cephradine tra 4.80 4.13 0.46 0.14 Schwinghammer et al. (1990)
Chlorothiazide tra 4.50 4.14 0.20 0.95 Osman et al. (1982)
Cimetidine tra 8.30 5.15 1.00 0.19 Schentag et al. (1981)
Cinoxacin tra 2.50 1.81 0.33 0.63 Sisca et al. (1983)
Ciprofloxacin tra 6.00 3.90 1.80 0.40 Sorgel et al. (1989)
Clindamycin tra 5.00 0.65 1.10 0.94 Plaisance et al. (1989)
Dexamethasone tes 3.70 0.10 0.82 0.68 Gustavson and Benet (1985)
Diltiazem tra 12.0 0.24 3.10 0.78 Echizen and Eichelbaum (1986)
Diphenhydramine tra 6.20 0.12 4.50 0.78 Blyden et al. (1986)
Domperidone tra 8.33 0.08 5.50 0.92 Lauritsen et al. (1990a)
Doxycycline tra 0.53 0.22 0.75 0.88 Saivin and Houin (1988)
Fentanyl tra 13.0 1.04 4.00 0.84 Olkkola et al. (1995)
Flecainide val 5.60 2.41 4.90 0.61 Funck-Brentano et al. (1994)
Granisetron tes 11.0 1.76 3.00 0.65 Allen et al. (1994)
Imipramine tra 13.3 0.13 18.1 0.78 Sallee and Pollock (1990)
Indomethacin tra 1.40 0.21 0.29 0.90 Oberbauer et al. (1993)
Isradipine tra 10.0 0.00 4.00 0.97 Fitton and Benfield (1990)
Ketoprofen tra 1.20 1.19 0.15 0.99 Jamali and Brocks (1990)
Lomefloxacin tra 3.30 2.15 2.30 0.10 Freeman et al. (1993)
Lorazepam val 1.10 0.00 1.30 0.91 Greenblatt (1981)
Mepirzepine tra 7.29 0.29 4.84 0.85 Timmer et al. (2000)
Methadone tra 1.23 0.06 3.59 0.88 Inturrisi et al. (1987)
Methylprednisolone tra 6.20 0.30 1.20 0.78 Lew et al. (1993)
Metoclopramide tra 6.20 1.24 3.40 0.40 Lauritsen et al. (1990b)
Metoprolol val 11.3 1.33 3.19 0.08 Hinderling et al. (1984a)
Midazolam tra 6.60 3.70 1.10 0.95 Garzone and Kroboth (1989)
Nadolol tra 2.89 2.19 1.90 0.28 Hinderling et al. (1984a)
Nafcillin tra 7.50 2.03 0.35 0.89 Marshall et al. (1977)
Nitrendipine tes 5.90 0.12 3.60 0.94 Soons and Breimer (1991)
Norfloxacin tra 2.52 0.73 1.12 0.18 Sorgel et al. (1989)
Ofloxacin tra 3.50 2.24 1.80 0.25 Lamp et al. (1992)
Ondansetron tra 5.90 0.30 1.90 0.73 Roila and Del Favero (1995)
Oxacillin tra 6.10 2.81 0.33 0.92 Dittert et al. (1969)
Phencyclidine tra 5.43 0.47 6.20 0.65 Busto et al. (1989)
Pindolol val 7.69 3.89 1.16 0.59 Hinderling et al. (1984a)
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Table 1 (Continued )

Compound Usea CL (ml/min/kg) CLR (ml/min/kg) Vss (l/kg) fb Reference

Pirenzepine val 3.57 1.71 0.20 0.12 Lauritsen et al. (1990a)
Pravastatin tra 3.50 1.65 0.46 0.46 Quion and Jones (1994)
Propranolol tra 10.0 0.39 1.96 0.93 Hinderling et al. (1984a)
Pyrimethamine tra 0.41 0.27 2.30 0.87 Weinstein et al. (1992)
Sufentanil tra 12.7 0.76 1.74 0.93 Bovill et al. (1984)
Sulfinpyrazone tra 0.96 0.37 0.29 0.99 Schlicht et al. (1985)
Terazosin tra 1.10 0.13 0.80 0.92 Titmarsh and Monk (1987)
Timolol tra 8.49 1.00 1.43 0.60 Hinderling et al. (1984b)
Tolamolol tra 10.8 0.53 2.11 0.91 Hinderling et al. (1984a)
Tolmetin tra 1.30 0.09 0.54 1.00 Hyneck et al. (1988)

a Tra: training, val: validation, tes: testing.

2.2. Descriptors

Presentation of data containing adequately useful
information to ANNs is the basis for construction of
effective predictive models. Descriptors were gen-
erated solely from the drug structure and aimed
to numerically encode meaningful features of each
molecule. A wide range of one- and two-dimensional
descriptors were generated (Table 2) representing

Table 2
List of molecular descriptors generated

Descriptor type Symbol Reference

Atom and functional group countsa 010H, 112C, 113C, 120C, 121C, 122C, 130C,
131C, 140C, 210N, 212N, 220N, 221N, 230N,
310O, 311O, 320O, 611S, 620S, 630S, 640S,
710Cl, 810Br, C, N, O, S, Hal

Kier and Hall (1999)

Connectivity index differencesb 0�v, 1�v, 2�v, 3�v, 3�v
c,

4�v, 4�v
c,

4�v
pc Galvez et al. (1994)

Connectivity index quotientsb 0ξv, 1ξv, 2ξv, 3ξv, 3ξv
c , 4ξv, 4ξv

c , 4ξv
pc Galvez et al. (1994)

Charge indicesc G1, G2, G3, G4, G5, G1v, G2v, G3v, G4v,
G5v, J1, J2, J3, J4, J5, J1v, J2v, J3v, J4v, J5v

Galvez et al. (1995))

Vertex countsd n, L, V3, V4 Galvez et al. (1995)
Ramificationse Pr1, Pr2, Pr3 Galvez et al. (1995)
Wiener numberf W Galvez et al. (1995)
Molecular weight and derivativesg MW, ISRMW, ICRMW Jacobs (1967), Herman and

Veng-Pedersen (1994)
clogP and cross-productsh At5, CDR, At5x, CDRx, clogPx Rekker and De Kort (1979),

Viswanadhan et al. (1989)
Random Ran Maddalena and Johnston (1995)

a Chemical constitution of molecule.
b Linear combinations of connectivity indices derived from molecular graph.
c Derived from molecular graph: describe charge distribution.
d Counts of non-hydrogen atoms.
e Atom adjacency counts.
f Sum of topological distances in molecular graph.
g Diffusional characteristics.
h LogP calculated from molecular structure.

hydrophobic, steric and electronic properties to en-
code drug features from an atomic to holistic level.
Three-dimensional descriptors were not used since
the current study sought to avoid dependence on
molecular conformation.

Calculated logP (clogP) values were determined
using the PrologP 5.1 module in Pallas (CompuDrug
International, 1997). In-house computer routines were
written in Visual Basic (Microsoft, 1998) to generate
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all other descriptors from the molecular graph. An ad-
ditional random descriptor (Maddalena and Johnston,
1995) was also included as a quality control measure
to monitor ANN performance.

2.3. ANN modeling

The ANN program used was Statistica Neural Net-
works (StatSoft Inc., 2000). All networks were of the
three-layered feed-forward back-propagation (multi-
layer perceptron) type, containing a bias neuron in
each layer and a single neuron in the output layer. A
sigmoidal transfer function was employed in all neu-
rons and weight adjustment was performed according
to the generalised delta rule (Bourquin et al., 1997).
Connection weights were initialised with random val-
ues.

Models were constructed using the training set of
compounds. The validation subset was then used to
provide an indication of model performance. All gen-
erated descriptors were included in the initial model.
Redundant descriptors were then pruned and the
system was re-trained. Once optimum models were
achieved true predictive ability was assessed using
the testing subset of compounds.

Both manual and automated methods were em-
ployed for descriptor selection. Sensitivity analysis of
inputs was used to identify significance of individual
molecular descriptors and to select descriptors that
were considered the most important. Descriptors with
sensitivities lower than one were deemed to be detri-
mental to the model. The higher the sensitivity above
one the greater its influence on the model. Hence,
those with lower sensitivities were able to be se-
quentially removed. The ANN program also utilized
regularization and search algorithms for automated
descriptor selection.

3. Results and discussion

3.1. Data analysis and training

The distribution of values for the pharmacokinetic
parameters of the subsets were examined and all were
shown to have homogeneous variances (Table 3). This
enabled ANOVA to be performed to compare means.
The ANOVA significance values were sufficiently high

Table 3
Statistical analysis of data sets

Pharmacokinetic parameter Levenea ANOVAb

CL 0.086 0.966
CLR 0.143 0.483
Vss 0.668 0.863
fb 0.764 0.554

a Levene’s homogeneity of variance.
b Analysis of variance.

to accept that there were no significant differences be-
tween the subsets for all pharmacokinetic parameters
examined (Table 3).

3.2. Training and validation

All 85 descriptors generated were used to train the
ANN, after which pruning was implemented. Groups
of descriptors were removed at a time resulting in mod-
els with generally decreasing error from initial to final
models (Table 4). Magnitude of the root mean squared
(RMS) error varied between individual pharmacoki-
netic parameters indicating the difference in modeling
capability of the ANN for each parameter. Models for
CL had the highest RMS error whereas those forfb
had the lowest. Such a difference pointed to the greater
complexity involved in xenobiotic metabolism and ex-
cretion compared with the more simple processes in-
volved in protein binding. Even so, the RMS error is a
measure of training performance and although errors
for CL were higher than forfb, this was not necessarily
an indication of the absolute predictive performance
of the ANN models.

Large numbers of input variables cause overfitting
of data resulting in models with a poor ability to gener-
alise. This was the case with initial models since all de-
scriptors were included. As expected, initial validation
correlations began relatively low and then increased
as redundant descriptors were removed (Fig. 1). Af-
ter a number of runs the validation correlation actu-
ally decreased. It was possible that the group of de-
scriptors removed in a single training run may have
contained some useful information. However, many
of the descriptors were correlated amongst themselves
(Basak et al., 2000) so that removal would not have
entirely eliminated their information content from the
system.
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Table 4
ANN models over the course of pruning

Parameter Architecturea RMS
errorb

Pruning detailsc

CL 85-30-1 2.14 Subset selection
59-21-1 1.80 Sensitivity< 1.05
38-20-1 2.04 Subset selection
26-16-1 1.92 Subset selection
12-13-1 1.51 Sensitivity< 1.15
7-13-1 1.84 N/A

CLR 85-21-1 0.78 Subset selection
56-21-1 0.88 Subset selection
36-12-1 0.54 Sensitivity< 1.05
13-13-1 0.55 Subset selection
4-4-1 0.59 N/A

Vss 85-15-1 1.06 Subset selection
66-11-1 0.75 Sensitivity< 1.03
39-8-1 0.69 Subset selection
15-8-1 0.59 Sensitivity< 1.05
12-14-1 0.44 Subset selection
4-13-1 0.50 N/A

fb 85-30-1 0.24 Sensitivity< 1.02
46-24-1 0.26 Sensitivity< 1.03
25-20-1 0.23 Subset selection
12-6-1 0.21 Sensitivity< 1.17
8-20-1 0.21 Subset selection
5-2-1 0.18 N/A

a Inputs-hiddens-outputs.
b Root mean squared error.
c Subset selection was automated whereas sensitivity-based prun-

ing was manual.
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Fig. 1. Validation correlation over the course of pruning for CL,
CLR, Vss, and fb.

Table 5
Optimum ANN models

Parameter Testing
correlation

Descriptors ρa

CL 0.855 122C, 221N, 320O,
0�v, 0ξv, CDR, At5x

0.4

CLR 0.992 220N, 221N,J1v, At5, 2.0
Vss 0.956 320O,4ξv

pc, At5x, CDRx 0.6
fb 0.863 230N, 320O, Hal, Pr1, At5 3.3

a Ratio of the number of compounds to the number of ANN
connections.

3.3. Optimum models

Each pharmacokinetic parameter studied was de-
scribed by different optimum models. The ratio,ρ, has
previously been suggested to lie within the range 1.8 >

ρ > 2.2 for optimal results (Andrea and Kalayeh,
1991), however, a more current and correct view is
thatρ is implementation dependent (So and Richards,
1992). The values ofρ in the optimum models lay
within the range 0.4–3.3 (Table 5). A number of other
studies have also presented successful ANN models
with similar values ofρ: 0.2–0.7 for mode of action
of anti-cancer drugs (Weinstein et al., 1992), 3.4 for
DHFR inhibition of triazines (Andrea and Kalayeh,
1991), and 7.5 for mutagenicity of aromatic amines
(Villemin et al., 1993). Other work performed specifi-
cally to determine the effect ofρ during selective prun-
ing in ANN studies has found that useful models may
be developed for a broad range ofρ values (Turner
et al., 2003a). Hence, the combination of the prun-
ing technique and the nature of the data set enabled
the development of sound ANN models in the current
study. This was further evidenced by the high valida-
tion correlations and predictive ability of the models
developed which would not be the case if the models
were unsound.

With respect to the optimum models developed, it
was found necessary to vary numbers of neurons in
the hidden layer of the ANN to best model the in-
dividual pharmacokinetic parameters (Table 4). The
second finding was that optimum models contained
distinct combinations of descriptors. The third finding
was that, except for CLR and Vss, optimum models
contained a different final number of descriptors.

The number of descriptors and hidden neurons re-
quired to predict a given pharmacokinetic parameter
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may reflect the relative complexity of that particular
parameter. Clearance is a measure of drug elimination
from the body and occurs due to many physiological
processes. As long as linear elimination processes are
involved total body clearance can be expressed as the
sum of renal and nonrenal clearances. In comparison,
CLR is relatively simple, generally involving the pro-
cesses of glomerular filtration, reabsorption, and tubu-
lar secretion, whereas CL is more complex since most
drugs undergo a wide variety of metabolic reactions
primarily in the liver. This was reflected by the rela-
tive complexity of the optimum ANN model for each
clearance parameter: seven hidden neurons and 13 de-
scriptors were required for CL and only four hidden
neurons and four descriptors for CLR. Good predic-
tive performance was achieved for these pharmacoki-
netic parameters with high testing correlations being
recorded for both (Table 5).

Predicted values were compared with experimental
values (Fig. 2) in order of ascending values of each
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Fig. 2. Predicted vs. observed experimental values for optimum ANN models.

pharmacokinetic parameter. Error bars represented the
error associated with each data point either from the
literature (observed experimental values) or within the
ANN models (predicted values). Most prediction data
points for CLR andVss showed strong agreement with
experimental values. In addition, clear segregation of
high and low values was seen for these pharmacoki-
netic parameters. Error at each predicted point for
CL, CLR, andVss was very low demonstrating good
precision.

Quantitative predictions forVss were quite accurate
and the majority of values were close to or within
the experimental error associated with the observed
values. Similar results were seen for CLR although
there was somewhat more deviation from observed
values. In relative terms the predictive errors for dex-
amethasone and nitrendipine were high but the abso-
lute differences between predicted and observed val-
ues were low due to their small renal clearance values.
This model was able to distinctly separate compounds
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with high and low renal clearances. Observed systemic
clearance values were more evenly distributed. Again,
quantitative predictions were close to or within the er-
ror range of observed clearances. Predicted clearance
for dexamethasone was half the observed value. Nev-
ertheless, this was the smallest predicted value for the
testing set and dexamethasone had the lowest observed
experimental clearance. Similar results were seen for
cephalexin clearance. It is the predictive ability of a
model that makes it useful, rather than training abil-
ity. Therefore, models for CL, CLR, andVss demon-
strated excellent performance based on predictions for
the independent testing compounds.

Predicted values forfb displayed higher RMS er-
rors than for the other pharmacokinetic parameters.
This was particularly the case for compounds with low
protein binding. Predictions for compounds with high
protein binding were more accurate and had smaller
associated error. Accurate estimation offb is most im-
portant clinically whenfb is high. In contrast, lowfb is
much less significant clinically. Hence, the optimum
model showed a smaller RMS where it was most im-
portant. Protein binding is a relatively simple phar-
macokinetic parameter involving weak non-covalent
bonds being formed between the two species. Never-
theless, the optimum model forfb contained more de-
scriptors than those for CLR andVss indicating a more
subtle relationship than first thought. Protein binding
is influenced by the three-dimensional conformation
of a molecule which determines the accessibility of
functional groups for interaction with the protein. The
lack of three-dimensional descriptors in the current
study may have led to the higher error seen for some
predictions. Although this model suffered somewhat
in quantitatively predicting lowfb, nevertheless, com-
pounds with high protein binding were predicted well
and the model was able to qualitatively differentiate
between compounds with high and low protein bind-
ing values.

A major advantage of the current technique is that
generation of descriptors requires knowledge only
of the chemical structure of the drug, thus making
preliminary physicochemical studies unnecessary.
Other published QSPkRs utilised methods based on
experimental determination of physicochemical data
for use as model inputs (Hinderling et al., 1984a;
Gobburu and Shelver, 1995). These included reversed
phase high-performance liquid chromatography for

calculation of apparent octanol/buffer partition coef-
ficient, the shake flask method for pKa and apparent
octanol/buffer partition coefficient calculation, and
experimentally-determinedfb as a model input. Using
only descriptors generated from drug structure the cur-
rent study achieved accurate quantitative predictions
for independent testing compounds for CL, CLR and
Vss and good qualitative results for prediction offb.

Optimum models were constructed based on 50
compounds representing a broad range of structural
motifs. It is necessary to evaluate a model on a sub-
set of structures due to the vast number of possible
drug-like structures available. For example, targeted or
focussed chemical libraries do not represent the entire
chemical space available but may still contain con-
siderably large numbers of structures with a common
characteristic such as susceptibility to metabolism by
a particular cytochrome P450 isozyme. Should the
chemical structures in such a library lie within the
bounds of the models developed in the current study
then fast and reliable prediction of their pharmacoki-
netic parameters could be achieved. Those exhibiting
poor predicted pharmacokinetics could be eliminated
early during drug development to avoid the consid-
erable expense of late failure. The models presented
have demonstrated that prediction of various pharma-
cokinetic parameters for unknown compounds is pos-
sible based on simple descriptors derived from chem-
ical structure. The potential also exists to extend the
models presented in the current study to include larger
numbers of chemical structures and substructures.

3.4. Descriptor analysis

A number of descriptors remaining in optimum
models described features of drugs generally known
to relate to their physicochemical properties. All op-
timum models included clogP descriptors which are
closely related to lipophilicity (Table 5). Lipophilicity
has been used to describe the dissociation constant
KD between a drug-protein complex for a homolo-
gous series (Seydel and Schaper, 1981) and so clogP
descriptors were expected in final models forfb.
Furthermore, only unbound drug is able to undergo
glomerular filtration so clogP was expected to indi-
rectly influence CLR prediction.

Connectivity indices up to the fourth order are
known to encode various molecular properties includ-
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ing molecular density, branching and aromatic ring
substitutions (Kier and Hall, 1986) and have recently
been correlated withfb (Murcia-Soler et al., 2001).
Linear recombination of connectivity indices provide
more useful information for prediction (Galvez et al.,
1994) so it was reasonable to expect their inclusion
in optimum models forVss and CL. Connectivity in-
dices derive information from the hydrogen-depleted
molecular graph where all vertices are considered
equal. Charge indices rely on the valence state of
graph vertices so encode information about the het-
erogeneity of a molecule. Different atoms can con-
tribute in different ways to the properties exhibited by
a molecule. For example, an aromatic ring composed
of carbon atoms provides a hydrophobic region which
can promote�-stacking and alignment with other
aromatic rings. This is in contrast to the positioning
of an oxygen atom between two carbon atoms form-
ing an ether group. Such an arrangement exhibits two
lone-pairs of electrons on the oxygen which can then
partially polarise the atom. This may then permit in-
teraction with polar sites of other small molecules or
proteins and thus affect whole-molecule behaviour.

Similar polarisation and lone-pair interactions are
exhibited by various halogen, nitrogen and oxygen
groups on a molecule. The influences of these groups
can combine positively or negatively based on their
proximity to each other across a molecule. Adjacency
counts could provide such a link between individual
and combined influences of functional groups. Since
all optimum models contained both charge indices and
functional groups counts, this indicated the signifi-
cance of structural considerations at an atomic level in
determining the pharmacokinetic behaviour of a com-
pound.

4. Conclusions

The current study has shown that useful informa-
tion can be derived from the chemical structure of a
drug to generate descriptors encoding various proper-
ties of that drug. Using the theoretically calculated de-
scriptors for a set of structurally diverse compounds,
validated ANN models were successfully able to pre-
dict pharmacokinetic parameters for independent test-
ing compounds. Different numbers of descriptors were
required to model individual pharmacokinetic param-

eters and this reflected their relative complexity. Fur-
thermore, certain descriptors and combinations of de-
scriptors were shown to be important for different
pharmacokinetic parameters. Time and cost savings
gained from using thisin silico method makes it a rel-
evant and applicable tool in pharmaceutical product
development.
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